The Higgs Boson - LHC Experiment

. 9/6/08

The realms of the inconceivably huge and the unimaginably tiny will be united in this month in the countryside near Geneva, when the world’s most massive physics experiment gets under way within a 17-mile ring spanning the French-Swiss border. Inside the Large Hadron Collider (LHC), massive, powerful magnets chilled to a few degrees above absolute zero — colder than outer space — will zip beams of superenergetic protons and lead nuclei in a loop at speeds within a hairsbreadth of the speed of light, then collide them head-on. The energy released will be so vast that the impacts will recreate conditions in the universe as they existed just a fraction of a second after the big bang. If the LHC performs as expected, it could at last nail down that holy grail of contemporary physics, the Higgs boson — known as the “God particle” because it is thought to lend mass to matter. It may even finally unveil the secret of dark matter, the mysterious entity that makes up 85 percent of the universe — thereby shedding light on as-yet-unexplainable motions of galaxies.

When you get on the scale in the morning, you may be hoping that it registers a smaller number than the day before -- you may be hoping that you've lost weight. It's the quantity of mass in you, plus the force of gravity, that determines your weight. But what determines your mass?

That's one of the most-asked, most-hotly pursued questions in physics today. Many of the experiments circulating in the world's particle accelerators are looking into the mechanism that gives rise to mass. Scientists at CERN, as well as at Fermilab in Illinois, are hoping to find what they call the "Higgs boson." Higgs, they believe, is a particle, or set of particles, that might give others mass.

The idea of one particle giving another mass is a bit counter-intuitive... Isn't mass an inherent characteristic of matter? If not, how can one entity impart mass on all the others by simply floating by and interacting with them?

An oft-cited analogy describes it well: Imagine you're at a Hollywood party. The crowd is rather thick, and evenly distributed around the room, chatting. When the big star arrives, the people nearest the door gather around her. As she moves through the party, she attracts the people closest to her, and those she moves away from return to their other conversations. By gathering a fawning cluster of people around her, she's gained momentum, an indication of mass. She's harder to slow down than she would be without the crowd. Once she's stopped, it's harder to get her going again.

This clustering effect is the Higgs mechanism, postulated by British physicist Peter Higgs in the 1960s. The theory hypothesizes that a sort of lattice, referred to as the Higgs field, fills the universe. This is something like an electromagnetic field, in that it affects the particles that move through it, but it is also related to the physics of solid materials. Scientists know that when an electron passes through a positively charged crystal lattice of atoms (a solid), the electron's mass can increase as much as 40 times. The same might be true in the Higgs field: a particle moving through it creates a little bit of distortion -- like the crowd around the star at the party -- and that lends mass to the particle.

The question of mass has been an especially puzzling one, and has left the Higgs boson as the single missing piece of the Standard Model yet to be spotted. The Standard Model describes three of nature's four forces: electromagnetism and the strong and weak nuclear forces. Electromagnetism has been fairly well understood for many decades. Recently, physicists have learned much more about the strong force, which binds the elements of atomic nuclei together, and the weak force, which governs radioactivity and hydrogen fusion (which generates the sun's energy).

Various magnets of the paradoxically named Compact Muon Solenoid experiment are moved into position at the Large Hadron Collider facility deep under the French-Swiss border.

Electromagnetism describes how particles interact with photons, tiny packets of electromagnetic radiation. In a similar way, the weak force describes how two other entities, the W and Z particles, interact with electrons, quarks, neutrinos and others. There is one very important difference between these two interactions: photons have no mass, while the masses of W and Z are huge. In fact, they are some of the most massive particles known.

The first inclination is to assume that W and Z simply exist and interact with other elemental particles. But for mathematical reasons, the giant masses of W and Z raise inconsistencies in the Standard Model. To address this, physicists postulate that there must be at least one other particle -- the Higgs boson.

The simplest theories predict only one boson, but others say there might be several. In fact, the search for the Higgs particle(s) is some of the most exciting research happening, because it could lead to completely new discoveries in particle physics. Some theorists say it could bring to light entirely new types of strong interactions, and others believe research will reveal a new fundamental physical symmetry called "supersymmetry."

First, though, scientists want to determine whether the Higgs boson exists. The search has been on for over ten years, both at CERN's Large Electron Positron Collider (LEP) in Geneva and at Fermilab in Illinois. To look for the particle, researchers must smash other particles together at very high speeds. If the energy from that collision is high enough, it is converted into smaller bits of matter -- particles -- one of which could be a Higgs boson. The Higgs will only last for a small fraction of a second, and then decay into other particles. So in order to tell whether the Higgs appeared in the collision, researchers look for evidence of what it would have decayed into.

In August 2000, physicists working at CERN's LEP saw traces of particles that might fit the right pattern, but the evidence is still inconclusive. LEP was closed down in the beginning of November, 2000, but the search continues at Fermilab in Illinois, and will pick up again at CERN when the LHC (Large Hadron Collider) begins experiments in this month’s 10, i.e. September 10, 2008.


Bookmark and Share


Post a Comment

Creative Commons License Add to Technorati Favorites Visit blogadda.com to discover Indian blogs